Disappearing messages

ability to turn on/off disappearing messages feature per conversation,
specify ttl

* use preferences framework, preference affects local deletion of both
sent and received messages

special chat item on change

in direct chat - chat item can be interacted with to agree or disagree
with preference change, updates preference accordingly

° how does party that offered preference change learn about
disagreement? (maybe just no preference update from contact is
ok, since it's still not on if it's not mutual)

o how does it learn about disagreement on ttl? (it's on already - so it
works for both but differently if there's no agreement)

° single updating chat item or per event? (probably per event is
better since they can be spaced in time)

* in group - set by owner
* should it be allowed to be configured globally?

* change of setting shouldn't prevent previous disappearing messages
from being deleted

Design

* add delete at field to chat items table, index
idx chat items delete at

* add disappearingItems :: TMap ChatItemId (Async ()) to
ChatController (use Weak ThreadId?)

* new background process that periodically scans for disappearing
messages bound to be deleted during next 30 minutes:

o add cleanupManager :: TVar (Async ()) to ChatController

o periodically gets items to schedule for deletion based on delete at
field

o for items to be deleted in next 30 minutes - add thread to
disappearingltems - thread delays until deleteAt date, then deletes
and sends CRChatltemDeleted to view

o for items past current time - delete in bulk



o race condition between bulk deletion of expired items on start and
opening a chat with them - they should be removed from chat view
once deleted - don't optimize for bulk deletion and create threads?
create multiple CRs after bulk deletion? create single chat
response with all ids?

* when chat item is deleted locally, either by user or via "delete for
everyone" feature, kill thread and remove from map

* when MsgContent chat item is sent or marked read, add thread to
disappearingltems based on chat preference

e UI shows timer based on chat item's createdAt date and deleteAt date
kkk
Preference agreement:

* new preference types?

""" haskell data DisappearingMessagesPreference =
DisappearingMessagesPreference { allow :: FeatureAllowed, ttl :: Int }

data DisappearingMessagesGroupPreference =
DisappearingMessagesGroupPreference { enable ::
GroupFeatureEnabled, ttl :: Int }

-- requires changing functions and types using Preference and
GroupPreference "

* chat items to contain old and new preference value

kkk

Maybe agreement shouldn't be via preferences framework, but ad-hoc? For
example:

* new protocol messages XMsgTt1l0ffer ttl, XMsgTtlAgree ttl,
XMsgTtlOff

* for direct chats on XMsgTtlOffer contact disappearingMessages fields
is updated to

» for direct chats on XMsgTtlAgree check ttl equals offered, then turn on

» for group chats only XMsgTtlAgree has to be sent, should only be
accepted from owner

* XMsgTtlOff turns off unconditionally, for group chats should only be
accepted from owner

* types:



""" haskell data DisappearingMessagesState = DMSOff | DMSOffered
ttl | DMSAgreed ttl

data Contact = Contact { ... disappearingMessagesState ::
DisappearingMessagesState, ... }

data Grouplnfo = Grouplnfo { ... disappearingMessagesState ::
DisappearingMessagesState, ... }

-- make part of ChatSettings? "



	Disappearing messages
	Design


