
Disappearing messages
ability to turn on/off disappearing messages feature per conversation,
specify ttl

use preferences framework, preference affects local deletion of both
sent and received messages

special chat item on change

in direct chat - chat item can be interacted with to agree or disagree
with preference change, updates preference accordingly

how does party that offered preference change learn about
disagreement? (maybe just no preference update from contact is
ok, since it's still not on if it's not mutual)

how does it learn about disagreement on ttl? (it's on already - so it
works for both but differently if there's no agreement)

single updating chat item or per event? (probably per event is
better since they can be spaced in time)

in group - set by owner

should it be allowed to be configured globally?

change of setting shouldn't prevent previous disappearing messages
from being deleted

Design

add delete_at field to chat_items table, index
idx_chat_items_delete_at

add disappearingItems :: TMap ChatItemId (Async ()) to
ChatController (use Weak ThreadId?)

new background process that periodically scans for disappearing
messages bound to be deleted during next 30 minutes:

add cleanupManager :: TVar (Async ()) to ChatController

periodically gets items to schedule for deletion based on delete_at
field

for items to be deleted in next 30 minutes - add thread to
disappearingItems - thread delays until deleteAt date, then deletes
and sends CRChatItemDeleted to view

for items past current time - delete in bulk

•

•

•

•

◦

◦

◦

•

•

•

•

•

•

◦

◦

◦

◦

race condition between bulk deletion of expired items on start and
opening a chat with them - they should be removed from chat view
once deleted - don't optimize for bulk deletion and create threads?
create multiple CRs after bulk deletion? create single chat
response with all ids?

when chat item is deleted locally, either by user or via "delete for
everyone" feature, kill thread and remove from map

when MsgContent chat item is sent or marked read, add thread to
disappearingItems based on chat preference

UI shows timer based on chat item's createdAt date and deleteAt date

Preference agreement:

new preference types?

``` haskell data DisappearingMessagesPreference =
DisappearingMessagesPreference { allow :: FeatureAllowed, ttl :: Int }

data DisappearingMessagesGroupPreference =
DisappearingMessagesGroupPreference { enable ::
GroupFeatureEnabled, ttl :: Int }

-- requires changing functions and types using Preference and
GroupPreference ```

chat items to contain old and new preference value

***

Maybe agreement shouldn't be via preferences framework, but ad-hoc? For
example:

new protocol messages XMsgTtlOffer ttl, XMsgTtlAgree ttl, 
XMsgTtlOff

for direct chats on XMsgTtlOffer contact disappearingMessages fields
is updated to 

for direct chats on XMsgTtlAgree check ttl equals offered, then turn on

for group chats only XMsgTtlAgree has to be sent, should only be
accepted from owner

XMsgTtlOff turns off unconditionally, for group chats should only be
accepted from owner

types:

◦ 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



``` haskell data DisappearingMessagesState = DMSOff | DMSOffered
ttl | DMSAgreed ttl

data Contact = Contact { ... disappearingMessagesState ::
DisappearingMessagesState, ... }

data GroupInfo = GroupInfo { ... disappearingMessagesState ::
DisappearingMessagesState, ... }

-- make part of ChatSettings? ```

	Disappearing messages
	Design

