
Database encryption

Approach

Using SQLCipher - it is a drop in replacement for SQLite that works for non-
encrypted databases without any changes (TODO test on iOS/Android).

direct-sqlite and sqlite-simple libraries are forked and renamed to 
direct-sqlcipher and sqlcipher-simple, with replaced cbits in direct-
sqlcipher (TODO include SQLCipher as git submodule with a script to
upgrade cbits).

While SQLCipher provides additional C functions to set and change database
key, they do not necessarily need to be exported as they are available as
PRAGMAs.

Moving from plaintext to encrypted database (and back) requires migration
process using sqlcipher_export() function.

The approach would be similar to database migration for the notifications:

the current users will be offered to migrate to encrypted database
once, with a notice that it can be done later via settings.
the new users will be asked to enter a pass-phrase to create a new
database (it can be empty, in which case the database won't be
encrypted).
during the migration the database backup will be created and the old
database files will be preserved - in case of the app failing to open the
new database right after the migration it should revert to using the
previous database.

When opening the database the key must be passed via chat command /
agent configuration, some test query must be performed to check that the
key is correct: https://www.zetetic.net/sqlcipher/sqlcipher-api/
#PRAGMA_key

Options to support in chat settings:

encrypt database (with automatic rollback in case of failure)
decrypt database (-"-)
change key (using PRAGMA rekey)

1. 

2. 

3. 

• 
• 
• 

https://discuss.zetetic.net/t/how-to-encrypt-a-plaintext-sqlite-database-to-use-sqlcipher-and-avoid-file-is-encrypted-or-is-not-a-database-errors/868
https://www.zetetic.net/sqlcipher/sqlcipher-api/#rekey

	Database encryption
	Approach


