Porting SimpleX Chat to mobile

Background and motivation

We have code that "works", the aim is to keep platform differences in the
core minimal and get the apps to market faster.

SimpleX platform design

See overview for overall platform design and objectives, it is worth reading
the introduction. The diagram copied from this doc:

---------------------- | ------------------------- | | SimpleX
Chat | | | | #---om-moooooeo-e + | | | Chat App | | |

R e T + | | | SimpleX Agent | | | +---------------- +
-------------- TLS ---------------- +----------------+ | SimpleX
Client | ------ SimpleX Messaging Protocol ------ > | SimpleX
Server | +---------------- R LR P
R + | |

* SimpleX Servers only pass messages, we don't need to touch that for
the app

* SimpleX clients talk to the servers, we won't use them directly

* SimpleX agent is used from chat, we won't use it directly from the app

* Chat app will expose API to the app to communicate with everything,
including DB and network.

Important application modules

Modules of simplexmq package used from simplex-chat:

* a functional API in Agent.hs to send messages and commands

* TBQueue to receive messages and notifications (specifically, subQ field
of AgentClient record in Agent/Client.hs)

* types from Agent/Protocol.hs).

This package has its own sqglite database file - as vl was not backwards
compatible migrations are restarted - where it stores all encryption and
signing keys, shared secrets, servers and queue addresses - effectively it
completely abstracts the network away from chat application, providing an
API to manage logical duplex connections.

Simplex-chat library is what we will use from the app:

* command type ChatCommand in Chat.hs that UI can send to it
* Ul sends these commands via TBQueue that inputSubscriber reads in
forever loop and sends to processChatCommand. There is a hack that



https://github.com/simplex-chat/simplexmq/blob/master/protocol/overview-tjr.md
file:///volumes/Accounts/owner/PycharmProjects/pBoxV2/MediaCaptureForm/md2pdf-Test/simplex-chat-stable/[Agent.hs](https:/github.com/simplex-chat/simplexmq/blob/master/src/Simplex/Messaging/Agent.hs#L38)
https://github.com/simplex-chat/simplexmq/blob/master/src/Simplex/Messaging/Agent/Client.hs#L72
https://github.com/simplex-chat/simplexmq/blob/master/src/Simplex/Messaging/Agent/Client.hs#L72
https://github.com/simplex-chat/simplexmq/blob/master/src/Simplex/Messaging/Agent/Protocol.hs
https://github.com/simplex-chat/simplexmq/tree/master/migrations
https://github.com/simplex-chat/simplex-chat/blob/master/src/Simplex/Chat.hs#L72

inputSubscriber not only reads commands but also shows them in the
view, depending on the commands.
* collection of view functions in Chat/View.hs to reflect all events in view.

This package also creates its own database file where it stores references to
agent connections managed by the agent, and how they map to contacts,
groups, and file transmissions.

App design options and questions

Sending chat commands from Ul and receiving them in
Haskell

Possible options:

 function (exported via FFI) that receives strings from UI and decodes
them into ChatCommand type, then sending this command to
processChatCommand. This option requires a single function in C header
file, but also requires encoding in Ul and decoding in Haskell.

* multiple functions exported via FFI each sending different command to
processChatCommand. This option requires multiple functions in header
file and multiple exports from Haskell.

Overall, the second option seems a bit simpler and cleaner, if we agree to go
this route we will refactor processChatCommand to expose its parts that
process different commands as independent functions.

On another hand, it might be easier to grow chat API if this is passed via a
single function and serialized as strings (e.g. as JSON, to have it more
universal) - it would also might give us an API for a possible future chat
server that works with thin, Ul-only clients.

In both cases, we should split processChatCommand (or the functions it calls)
into a separate module, so it does not have code that is not used from the

app.
Proposal

Use option 2 to send commands from Ul to chat, encoding/decoding
commands as strings with a tag in the beginning (TBC binary, text or JSON
based - encoding will have to be replicated in UI land; both encoding and
decoding is needed in Haskell land to refactor terminal chat to use this layer
as well, so we have a standard API for all implementations).

This function would have this type:
haskell sendRequest :: CString -> IO CString
to allow instant responses.

One more idea. This function could be made to match REST semantics that
would simplify making chat into a REST chat server api:


https://github.com/simplex-chat/simplex-chat/blob/master/src/Simplex/Chat/View.hs
https://github.com/simplex-chat/simplex-chat/tree/master/migrations

haskell sendRequest :: CString -> CString -> CString -> CString -
> I0 CString sendRequest verb path gs body = pure ""

Sending messages and notifications from Haskell to Ul

Firstly, we have to refactor the existing code so that all functions in View.hs
are passed to processChatCommand (or the functions for each command, if
we go with this approach) as a single record containing all view functions.

The current code from View.hs will not be used in the mobile app, it is
terminal specific; we will create a separate connector to the Ul that has the
same functions in a record - these functions communicate to the UL

Again, there are two similar options how this communication can happen:

» Uls would export multiple functions however each platform allows it, as
C exports, and they would be all imported in Haskell. This option feels
definitely worse, as it would have to be maintained in both iOS and
Android separately for exports, and in Haskell for imports, resulting in
lots of boilerplate.

* Uls would export one function that receives strings (e.g. JSON
encoded) with the messages and notifications, there will be one
function in Haskell to send these JSON. All required view functions in
Haskell land would simply send different strings into the same function.

In this case the second option seems definitely easier, as even with simple
terminal Ul there are more view events than chat commands (although,
given different mobile UI paradigms some of these events may not be
needed, but some additional events are likely to be addedd, that would be
doing nothing for terminal app).

Proposal

Encode messages and notifications as JSON, but instead of exporting the
function from UI (which would have to be done differently from different
platforms), have Haskell export function receiveMessage that would be
blocking until the next notification or message is available. UI would handle
it in a simple loop, on a separate thread:

haskell -- CString is serialized JSON (ToJSON serialized datatype
from haskell) receiveMessage :: I0 CString ()

To convert between Haskell and C interface:
""" haskell type CJSON = CString
toCJSON ToJSON a => a -> CJSON toCJSON = ...

-- Haskell interface send :: To)JSON a => String -> IO a recv :: ToJSON a =>
IO a

-- C interface csend :: CString -> IO CJSON crecv :: IO CJSON "


https://github.com/simplex-chat/simplex-chat/blob/master/src/Simplex/Chat/View.hs

Accessing chat database from the Ul

Unlike terminal UI that does not provide any capabilities to access chat
history, mobile UI needs to have access to it.

Two options how it can be done:

» Ul accesses database directly via its own database library. The upside
of this approach is that it keeps Haskel core smaller. The downside is
that sqlite is relatively bad with concurrent access. In Haskell code we
allowed some concurrency initially, having the pool limited to few
concurrent connection, but later we removed concurrency (by limiting
pool size to 1), as otherwise it required retrying to get transaction locks
with difficult to set retry time limits, and leading to deadlocks in some
cases. Also mobile sqlite seems to be compiled with concurrency
disabled, so we would have to ship app with our own sqlite (which we
might have to do anyway, for the sake of full text search support). We
could use some shared semaphore in Haskell to obtain database lock,
but it adds extra complexity...

» Ul accesses database via Haskell functions. The upside of this is that
there would be no issues with concurrency, and chat schema would be
"owned" by Haskell core, but it requires either a separate serializable
protocol for database access or multiple exported functions (same two
options as before).

However bad the second option is, it seems slightly better as at least we
would not have to duplicate sql quiries in iOS and Android. But this is the
trade-off I am least certain of...

Proposal
Use the same sendRequest function to access database.

Additional idea: as these calls should never mutate chat database, they
should only query the state, and as these functions will not be needed for
terminal UI, I think we could export it as a separate function and have all
necessary queries/functions in a separate module, e.g.:

haskell -- params and result are JSON encoded chatQuery ::
CString -> IO CString chatQuery params = pure ""

On another hand, if we go with REST-like sendRequest then it definitely
should be the only function to access chat and database state.

Ul database

UI needs to have its own storage to store information about user settings in
the app and, possibly, which chat profiles the user has (each would have its
own chat/agent databases).



Chat database initialization

Currently it is done in an ad hoc way, during the application start
(getCreateActiveUser function), we could either expose this function to
accept database name or just check on the start and initialize database with
the default name in case it is not present.

Multiple profiles in the app

All user profiles are stored in the same database. The current schema allows
multiple profiles, but the current Ul does not. We do not need to do it in the
app MVP.

Notifications

We don't need it in the first version - it is out of scope of releasable MVP -
but we need to think a bit ahead how it will be done so it doesn't invalidate
the design we settle on.

There is no reliable background execution, so the only way to receive
messages when the app is off is via notifications. We have added notification
subscriptions to the low protocol layer so that Haskell core would receive
function call when notification arrives to the native part and receive and
process messages and communicate back to the local part that would show a
local notification on the device:

Push notification -> Native -> Haskell ... process ... -> Native
-> Local notification

Notifications are the main reason why we will need to store multiple profiles
in the same database file - when notification arrives we do not know which
profile it is for, it only has server address and queue ID, and if different
profiles were in different databases we would either had to have a single
table mapping queues to profiles or lookup multiple databases - both options
seem worse than a single database with multiple profiles.

For the rest we would just use the same approaches we would use for U/
Haskell communications - probably a separate functions to receive
notifications to Haskell, and the same events to be sent back.


https://github.com/simplex-chat/simplex-chat/blob/master/src/Simplex/Chat.hs#L1178
https://github.com/simplex-chat/simplex-chat/blob/master/src/Simplex/Chat.hs#L1178

	Porting SimpleX Chat to mobile
	Background and motivation
	SimpleX platform design
	Important application modules

	App design options and questions
	Sending chat commands from UI and receiving them in Haskell
	Sending messages and notifications from Haskell to UI
	Accessing chat database from the UI
	UI database
	Chat database initialization
	Multiple profiles in the app

	Notifications


