
Identity layer for SimpleX Chat

Motivation

While lack of global identity provides high level of meta-data privacy and
there are communication scenarios where not having to use public identity
is desirable (e.g., a customer asking a question in online store before making
a purchase), many other communication scenarios require identity (e.g.,
online store itself would benefit from having a public address via which it
can be connected to).

We have already added user contact addresses represented as links/QR
codes, but they are impossible to memorize or to say in the conversation -
they require digital transmission, while in many scenarios analogue
transmission would be more convenient.

There is already a global addressing system in use - email addresses. Email
is the only communication system in existence that is fully decentralized and
has a quality called "address portability" - that is, users can keep an address
while changing the server provider. It is not true in 100% of cases - e.g. if
you have an address in gmail.com domain, you cannot move it to another
provider. But if you use Google Mail to host your email address in another
domain, e.g. as I do with my evgeny@poberezkin.com address, you can move
it to another provider without any restriction - it only requires a simple
change in the domain DNS record.

Email identities have multiple problems though:

your providers do not only know that you have an identity on the
network, they also know everybody who sends you messages.
you cannot change your address without losing your contacts - you have
to tell all your contacts your new address.
providers cannot guarantee, in most cases, that the sender of the email
has the address they claim they have. At best, they can check the
sending domain using DKIM and SPKIF, but these measures are not
enabled by default, require complex additional configuration and most
small users do not configure it correctly.

The problems with our current user contact address:

it allows to send traffic directly to user's device (via SMP server), there
is no proxy to implement anti-spam/anti-DoS protection. While we can
mitigate it by throttling the reception of contact requests on the client
side, the attacker can keep the queue full and make the address
unreachable. And if we don't throttle, the client can receive unlimited
amount of traffic via contact requests and run out of disk space. Having
identity server as a proxy allows to manage this problem.

The identity layer we add to SimpleX Chat has to keep the advantages of
email addressing and to solve these problems as well.

• 

• 

• 

• 



Product requirements

the identity of the user in SimpleX Chat must be the same as the email
address they have access to - the identity server should prove it while
provisioning the address.
the email access should not be used to access SimpleX address once it's
provisioned.
the identity server and network observers should not know who sends
messages to the user's identity - sender's addresses should be only
visible to the recipient.
changing or deleting address/identity should not make you losing the
contacts - we already have this quality with our user contact addresses.
for every email address user possesses, they should be able to create
multiple SimpleX addresses that can be used in different contexts using
SMTP + extension syntax (TBC what it is called). This extension in case
of SimpleX should be meaningful - that is if a given address does not
exist, the address should not be reachable.
Possibly, the user should be able to decide whether the server should
screen for known + addresses or if it should be screened on the device,
where the server only checks the main part of the address or uses some
patterns for + part. It's a trade-off - screening on the device hides the
actual addresses from the identity server, but increases the amount of
spam traffic the device has to process, while screening on the server
reduces the spam traffic, but reduces user privacy, as the server knows
all the sub-addresses. From the UX point of view there would be no
difference - the user will not see non-existing + extensions, unless they
choose to receive connection requests to their main address (that could
be put in a separate folder).
The user should be able to decide whether they want to receive
connection requests from users without verified SimpleX addresses (all
addresses are verified).
The senders' addresses should be cryptographically verified by
delivering some probe to that address and receiving the reply,
transparently to the user, before the connection request is shown to the
user.
Identity server should be accessed via chat clients, it should not have
its own separate UI.
The client of the address owner should be able to periodically confirm
that the identity server does not perform MITM attack on the address
to see the senders (by substituting the owner's public key for that
address).

Post MVP:

we should support identity transfer, e.g. if email changes the owner.
we should have some cool-down period for identity transfer, to the
reduce risks of malicious address takeover.

Design considerations

Identity server should communicate with the clients via SMP protocol

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
• 

• 



It probably should use the same message format as we use for chat, but
in a different namespace (e.g., i - we currently use x for chat
messages).
Having received the request to provision the address, it should send an
email to this address to verify it, following the best anti-SPAM practices
and allowing recipients to opt out of further emails.
Client should determine which SimpleX identity server to use via some
DNS record we decide on - we should support TXT and see if we can
register something in IANA for DNS servers that support custom
records.
In case domain does not have registered identity server, client could
default to hard-coded identity server we provide, that would have a list
of domains we allow creating addresses in.

Preliminary protocol design

It is assumed that identity server has it's own contact address, with the
same syntax as user's contact address, but with a different mode, e.g. 
identity. Or, possibly, we should use the same contact namespace. TBC

Establishing permanent connections with identity server

This connection is only needed for requesting and managing provisioned
addresses - this connection identifies the user to the server. As some actions
must be anonymous, they should not be sent via this connection.

To provision the connection the client would send INV agent message, same
as when connecting with other users, but without any user profile.

Requesting the address

Client sends i.addr.new <email> <contact_connection_request>
<public_signature_key> message to identity server via established
permanent connection (contact_connection_request will be used by
the server to forward connection requests to, public_signature_key
would be used to confirm the identity to the server on all operations
with the address. Possibly we don't need it and can rely on SMP
authorization/connections, TBC). email can include + extension or be
catch all.
Identity server responds with i.addr.id <address_id> message to
confirm that the request is received and being processed.
Unless the main address was already confirmed (e.g. when the client
requests additional + extension to the previously created address), the
identity server will send email to this address with the unique
connection request uri that the user should use to confirm this address.
Possibly it should have separate mode, e.g. confirm_address TBC.
Once the user confirms or rejects the address. 

If address is confirmed (see below), the server will: 
create new SMP queue(s) for the address that it would
process.

• 

• 

• 

• 

1. 

2. 

3. 

4. 
◦ 

▪ 



send i.addr.conf <address_id>
<connection_request_uri> message to confirm that this
identity is now associated with the user (including the created
queue(s)). Public key in connection_request_uri must be
the same as the one the user passed to the server, if it is
different it means server does not function correctly and this
address should not be used.

if the address is rejected, the server will send i.addr.rejected
<address_id> <error_code>. Servers can have some policies to
allow limited number of rejections per confirmed connection, and
also block creating the new connections from IP addresses that
create too many address requests (and in any case should throttle
it per IP address - not MVP problem to solve).

Once the address is confirmed the chat client will notify the user, and the
user can configure in the client which + extensions should be allowed (in
case catch-all was registered with the server) - not MVP. The user can now
share this address with other users.

Sending contact requests to the address

the sender's client should determine which identity server to use -
either via DNS lookup and in case the server is absent, via our identity
server.
the sender's client should send message to the identity server's
unsecured public queue. From SMP syntax perspective it should
probably be SMP confirmation, TBC, the message itself will be 
i.addr.req <email> - note that this does not expose sender's identity
in any way.
the identity server should respond with a message queue provisioned
specifically for this address with i.addr.con <connection_request>,
where connection_request is the one created specifically for this
address and contains recipient's public key.

The process above can be used by the address owner to periodically verify
that the server does not substitute recipient's public key.

The server should always respond with i.addr.con <connection_request>
even if the address is not registered, to avoid address-scanning - the
response time should be consistent, so the server would have a pool of
queues for such invalid responses.

having received this response, the sender would send the message
encrypted with the recipient's public key (or derived key from
recipient's public key and sender's public key sent together with the
message) e.g. i.addr.hello <sender_address> <public_key>
the server forwards it to the recipient (the server cannot decrypt this
message), with some anti-DDoS filters.
recipient decrypts the message and repeats the same process with the
sender's address. This message would be double encrypted, to avoid
sharing recipient's address, in case sender used somebody else's
address.

▪ 

◦ 

• 

• 

• 

• 

• 

• 



if the sender used the address they control they would receive the
confirmation from the recipient, and would be able to send this
confirmation back at which point the recipient user will be notified.

• 


	Identity layer for SimpleX Chat
	Motivation
	Product requirements
	Design considerations
	Preliminary protocol design
	Establishing permanent connections with identity server
	Requesting the address
	Sending contact requests to the address



