
 SimpleX Chat
 Security Assessment

 November 3, 2022

 Prepared for:

 Evgeny Poberezkin

 SimpleX Chat

 Prepared by: Artur Cygan and Jim Miller

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 SimpleX Chat Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to SimpleX
 under the terms of the project statement of work and has been made public at SimpleX’s
 request. Material within this report may not be reproduced or distributed in part or in
 whole without the express written permission of Trail of Bits.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 SimpleX Chat Security Assessment
 PUBLIC

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 4

 Project Summary 6

 Project Goals 7

 Project Targets 8

 Project Coverage 9

 Codebase Maturity Evaluation 10

 Summary of Findings 12

 Detailed Findings 13

 1. X3DH does not apply HKDF to generate secrets 13

 2. The pad function is incorrect for long messages 15

 3. The unPad function throws exception for short messages 16

 4. Key material resides in unpinned memory and is not cleared after its lifetime 17

 Summary of Recommendations 18

 A. Vulnerability Categories 19

 B. Code Maturity Categories 21

 C. Non-Security-Related Findings 23

 Trail of Bits 3 SimpleX Chat Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 SimpleX engaged Trail of Bits to review the security of SimpleX Chat. From October 11 to
 October 14, 2022, a team of two consultants conducted a security review of the
 client-provided source code, with one person-week of effort. Details of the project’s
 timeline, test targets, and coverage are provided in subsequent sections of this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with full knowledge of the system. We had access to the source code and
 documentation. We performed manual review and testing of the target system and its
 codebase.

 Summary of Findings
 The audit uncovered two significant flaws that could impact system confidentiality,
 integrity, or availability. A summary of the findings and details on notable findings are
 provided below.

 EXPOSURE ANALYSIS

 Severity Count

 Medium 2

 Low 2

 CATEGORY BREAKDOWN

 Category Count

 Cryptography 1

 Data Exposure 1

 Data Validation 2

 Trail of Bits 4 SimpleX Chat Security Assessment
 PUBLIC

 Notable Findings
 Significant flaws that impact system confidentiality, integrity, or availability are listed below.

 ● TOB-SMP-1
 The X3DH implementation does not apply HKDF to the three Diffie-Hellman outputs,
 which worsens the impact of key compromise and affects the protocol’s forward
 secrecy.

 ● TOB-SMP-4
 The key material is generated and processed in unpinned memory and is not
 cleared out after its lifetime. This increases the key exposure.

 Trail of Bits 5 SimpleX Chat Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Anne Marie Barry , Project Manager
 dan@trailofbits.com annemarie.barry@trailofbits.com

 The following engineers were associated with this project:

 Artur Cygan , Consultant Jim Miller , Consultant
 artur.cygan@trailofbits.com james.miller@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 October 6, 2022 Pre-project kickoff call

 October 18, 2022 Delivery of report draft and report readout meeting

 November 3, 2022 Delivery of final report

 Trail of Bits 6 SimpleX Chat Security Assessment
 PUBLIC

mailto:dan@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the SimpleX Chat.
 Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Does the end-to-end encryption protocol implementation conform with the Signal
 specification?

 ● Is the implementation vulnerable to any known cryptographic attacks?

 ● Is the key material stored and processed in a way that minimizes its exposure?

 ● Do the codebases adhere to Haskell programming best practices?

 Trail of Bits 7 SimpleX Chat Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the targets listed below.

 SimpleXMQ

 Repository https://github.com/simplex-chat/simplexmq

 Version 413aad5139acee28033404aed2e5516fc71c337c

 Type Haskell

 Platform Native

 SimpleX

 Repository https://github.com/simplex-chat/simplex-chat

 Version 07d2c9ff49034520effdf247f022c03b5a890150

 Type Haskell, Kotlin, Swift

 Platform iOS, Android, Linux, MacOS, Windows

 Trail of Bits 8 SimpleX Chat Security Assessment
 PUBLIC

https://github.com/simplex-chat/simplexmq
https://github.com/simplex-chat/simplex-chat

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches include the following:

 ● A manual review of the SimpleXMQ reference implementation written in Haskell. We
 focused on the client/server interaction in Simplex.Messaging.Server ,
 Simplex.Messaging.Client , Simplex.Messaging.Agent modules and
 reviewed the cryptography implementation in Simplex.Messaging.Crypto and
 Simplex.Messaging.Crypto.Ratchet modules.

 ● A review of the SimpleXMQ end-to-end encryption protocol and its adherence to
 Signal’s Double Ratchet algorithm and the X3DH key agreement protocol.

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● The SimpleXMQ notifications code was not reviewed.

 ● Other than the modules specified above, the Haskell code was reviewed on a
 best-effort basis.

 ● The simplex-chat repository was not prioritized for this review as that code
 performs only business logic and delegates cryptography and networking to the
 SimpleXMQ library.

 Trail of Bits 9 SimpleX Chat Security Assessment
 PUBLIC

https://github.com/simplex-chat/simplex-chat

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic We identified integer overflow that could impact the
 security of the system (TOB-SMP-2). We consider the
 fromInteger casting function that is used by
 SimpleXMQ to be unsafe.

 Moderate

 Auditing The SimpleXMQ library performs logging of events in
 relevant places without exposing sensitive information.

 Satisfactory

 Authentication /
 Access Controls

 Although there is no user authentication due to the
 design of SimpleX platform (no user accounts), the client
 authorization is performed with anonymous,
 client-generated signature keys, which are used to sign
 commands.

 Strong

 Complexity
 Management

 The code is organized in well defined modules and
 functions. There are occasional complex functions that
 are harder to audit.

 Satisfactory

 Cryptography
 and Key
 Management

 We identified one issue related to a missing
 cryptographic primitive in the X3DH protocol
 implementation (TOB-SMP-1). We also included
 recommendations for the secure erasure of
 cryptographic secrets (TOB-SMP-4). Otherwise,, we found
 that implementation’s cryptographic choices adhere to
 the recommendations of Signal’s specification and other
 cryptographic specifications.

 Moderate

 Trail of Bits 10 SimpleX Chat Security Assessment
 PUBLIC

 Documentation The SimpleXMQ codebases are well documented with a
 specification and inline documentation. We found that
 the specification largely complies with the
 implementation.

 Satisfactory

 Memory Safety
 and Error
 Handling

 The memory safety is guaranteed by the Haskell
 language. There is little use of C FFI in the dependencies.
 The errors are handled correctly using the standard
 Haskell conventions and enforced by the type system.
 Some libraries are throwing exceptions that are not
 encoded in the type system and are easy to miss, as
 detailed in TOB-SMP-3 .

 Satisfactory

 Testing and
 Verification

 The system is tested with high-level integration tests
 using the HSpec library. The unit simple tests, however,
 are scarce and could easily detect some simpler issues
 such as TOB-SMP-2 and TOB-SMP-3 .

 Moderate

 Trail of Bits 11 SimpleX Chat Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 X3DH does not apply HKDF to generate secrets Cryptography Medium

 2 The pad function is incorrect for long messages Data
 Validation

 Low

 3 The unPad function throws exception for short
 messages

 Data
 Validation

 Low

 4 Key material resides in unpinned memory and is not
 cleared after its lifetime

 Data
 Exposure

 Medium

 Trail of Bits 12 SimpleX Chat Security Assessment
 PUBLIC

 Detailed Findings

 1. X3DH does not apply HKDF to generate secrets

 Severity: Medium Difficulty: High

 Type: Cryptography Finding ID: TOB-SMP-1

 Target: simplexmq/src/Simplex/Messaging/Crypto/Ratchet.hs

 Description
 The extended triple Diffie-Hellman (X3DH) key agreement protocol works by computing
 three separate Diffie-Hellman computations between pairs of keys. In particular, each party
 has a longer term private and public key pair as well as a more short-term private and
 public key pair. The three separate Diffie-Hellman computations are performed between
 the various pairs of long term and short term keys. The key agreement is performed this
 way to simultaneously authenticate each party and provide forward secrecy, which limits
 the impact of compromised keys.

 When performing the X3DH key agreement, the final shared secret is formed by applying
 HKDF to the concatenation of all three Diffie-Hellman outputs. The computation is
 performed this way so that the shared secret depends on the entropy of all three
 Diffie-Hellman computations. If the X3DH protocol is being used to generate multiple
 shared secrets (which is the case for SimpleX), then these secrets should be formed by
 computing the HKDF over all three Diffie-Hellman outputs and then splitting the output of
 HKDF into separate shared secrets. However, as shown in Figure 1.1, the SimpleX
 implementation of X3DH uses each of the three Diffie-Hellman outputs as separate secrets
 for the Double Ratchet protocol, rather than inputting them into HKDF and splitting the
 output.

 x3dhSnd :: DhAlgorithm a => PrivateKey a -> PrivateKey a -> E2ERatchetParams a ->
 RatchetInitParams
 x3dhSnd spk1 spk2 (E2ERatchetParams _ rk1 rk2) =
 x3dh (publicKey spk1, rk1) (dh' rk1 spk2) (dh' rk2 spk1) (dh' rk2 spk2)

 x3dhRcv :: DhAlgorithm a => PrivateKey a -> PrivateKey a -> E2ERatchetParams a ->
 RatchetInitParams
 x3dhRcv rpk1 rpk2 (E2ERatchetParams _ sk1 sk2) =
 x3dh (sk1, publicKey rpk1) (dh' sk2 rpk1) (dh' sk1 rpk2) (dh' sk2 rpk2)

 x3dh :: DhAlgorithm a => (PublicKey a, PublicKey a) -> DhSecret a -> DhSecret a ->
 DhSecret a -> RatchetInitParams

 Trail of Bits 13 SimpleX Chat Security Assessment
 PUBLIC

 x3dh (sk1, rk1) dh1 dh2 dh3 =
 RatchetInitParams {assocData, ratchetKey = RatchetKey sk, sndHK = Key hk,

 rcvNextHK = Key nhk}
 where
 assocData = Str $ pubKeyBytes sk1 <> pubKeyBytes rk1
 (hk, rest) = B .splitAt 32 $ dhBytes' dh1 <> dhBytes' dh2 <> dhBytes' dh3
 (nhk, sk) = B .splitAt 32 rest

 Figure 1.1: simplexmq/src/Simplex/Messaging/Crypto/Ratchet.hs#L98-L112

 Performing the X3DH protocol this way will increase the impact of compromised keys and
 have implications for the theoretical forward secrecy of the protocol. To see why this is the
 case, consider what happens if a single key pair, (sk2 , spk2) , is compromised. In the
 current implementation, if an attacker compromises this key pair, then they can
 immediately recover the header key, hk , and the ratchet key, sk . However, if this were
 implemented by first computing the HKDF over all three Diffie-Hellman outputs, then the
 attacker would not be able to recover these keys without also compromising another key
 pair.

 Note that SimpleX does not perform X3DH with long-term identity keys, as the SimpleX
 protocol does not rely on long-term keys to identify client devices. Therefore, the impact of
 compromising a key will be less severe, as it will affect only the secrets of the current
 session.

 Exploit Scenario
 An attacker is able to compromise a single X3DH key pair of a client using SimpleX chat.
 Because of how the X3DH is performed, they are able to then compromise the client’s
 header key and ratchet key and can decrypt some of their messages.

 Recommendations
 Short term, adjust the X3DH implementation so that HKDF is computed over the
 concatenation of dh1 , dh2 , and dh3 before obtaining the ratchet key and header keys.

 Trail of Bits 14 SimpleX Chat Security Assessment
 PUBLIC

https://github.com/simplex-chat/simplexmq/blob/413aad5139acee28033404aed2e5516fc71c337c/src/Simplex/Messaging/Crypto/Ratchet.hs#L98-L112

 2. The pad function is incorrect for long messages

 Severity: Low Difficulty: High

 Type: Data Validation Finding ID: TOB-SMP-2

 Target: simplexmq/src/Simplex/Messaging/Crypto.hs

 Description
 The pad function from the Simplex.Messaging.Crypto module uses the fromIntegral
 function, resulting in an integer overflow bug that leads to incorrect length encoding for
 messages longer than 65535 bytes (Figure 2.1). At the moment, the function appears to be
 called only with messages that are less than that; however, due to the general nature of the
 module, there is a risk of using a pad with longer messages as the message length
 assumption is not documented.

 pad :: ByteString -> Int -> Either CryptoError ByteString
 pad msg paddedLen
 | padLen >= 0 = Right $ encodeWord16 (fromIntegral len) <> msg <> B .replicate

 padLen '#'
 | otherwise = Left CryptoLargeMsgError
 where
 len = B .length msg
 padLen = paddedLen - len - 2

 Figure 2.1: simplexmq/src/Simplex/Messaging/Crypto.hs#L805-L811

 Exploit Scenario
 The pad function is used on messages longer than 65535 bytes, introducing a security
 vulnerability.

 Recommendations
 Short term, change the pad function to check the message length if it fits into 16 bits and
 return CryptoLargeMsgError if it does not.

 Long term, write unit tests for the pad function. Avoid using fromIntegral to cast to
 smaller integer types; instead, create a new function that will safely cast to smaller types
 that returns Maybe .

 Trail of Bits 15 SimpleX Chat Security Assessment
 PUBLIC

https://github.com/simplex-chat/simplexmq/blob/413aad5139acee28033404aed2e5516fc71c337c/src/Simplex/Messaging/Crypto.hs#L805-L811

 3. The unPad function throws exception for short messages

 Severity: Low Difficulty: High

 Type: Data Validation Finding ID: TOB-SMP-3

 Target: simplexmq/src/Simplex/Messaging/Crypto.hs

 Description
 The unPad function throws an undocumented exception when the input is empty or a
 single byte. This is due to the decodeWord16 function, which throws an IOException if
 the input is not exactly two bytes. The unPad function does not appear to be used on such
 short inputs in the current code.

 unPad :: ByteString -> Either CryptoError ByteString
 unPad padded
 | B .length rest >= len = Right $ B .take len rest
 | otherwise = Left CryptoLargeMsgError
 where
 (lenWrd , rest) = B .splitAt 2 padded
 len = fromIntegral $ decodeWord16 lenWrd

 Figure 3.1: simplexmq/src/Simplex/Messaging/Crypto.hs#L813-L819

 Exploit Scenario
 The unPad function takes a user-controlled input and throws an exception that is not
 handled in a thread that is critical to the functioning of the protocol, resulting in a denial of
 service.

 Recommendations
 Short term, validate the length of the input passed to the unPad function and return an
 error if the input is too short.

 Long term, write unit tests for the unPad function to ensure the validation works as
 intended.

 Trail of Bits 16 SimpleX Chat Security Assessment
 PUBLIC

https://github.com/simplex-chat/simplexmq/blob/413aad5139acee28033404aed2e5516fc71c337c/src/Simplex/Messaging/Crypto.hs#L813-L819

 4. Key material resides in unpinned memory and is not cleared after its
 lifetime

 Severity: Medium Difficulty: High

 Type: Data Exposure Finding ID: TOB-SMP-4

 Target: simplexmq

 Description
 The key material generated and processed by the SimpleXMQ library resides in unpinned
 memory, and the data is not cleared out from the memory as soon as it is no longer used.
 The key material will stay on the Haskell heap until it is garbage collected and overwritten
 by other data. Combined with unpinned memory pages where the Haskell’s heap is
 allocated, this creates a risk of paging out unencrypted memory pages with the key
 material to disk. Because the memory management is abstracted away by the language,
 the manual memory management required to pin and zero-out the memory in
 garbage-collected language as Haskell is challenging.

 This issue does not concern the communication security; only device security is affected.

 Exploit Scenario
 The unencrypted key material is paged out to the hard drive, where it is exposed and can
 be stolen by an attacker.

 Recommendations
 Short term, investigate the use of mlock/mlockall on supported platforms to prevent
 memory pages that contain key material to be paged out. Explicitly zero out the key
 material as soon as it is no longer needed.

 Long term, document the key material memory management and the threat model around
 it.

 Trail of Bits 17 SimpleX Chat Security Assessment
 PUBLIC

 Summary of Recommendations

 The SimpleX Chat is a work in progress with multiple planned iterations. Trail of Bits
 recommends that SimpleX Chat address the findings detailed in this report and take the
 following additional steps prior to deployment:

 ● Cover all the modules from the SimpleXMQ with unit or property tests. This will help
 catch simpler errors and regressions while developing the codebase.

 ● The cryptonite library is considered state of the art for cryptography within the
 Haskell ecosystem. However, the library’s maintenance should be strengthened and
 its test coverage expanded, given that it is a language standard. If the project is still
 developed in Haskell, consider investing in or contributing to the library and
 performing a security audit on it.

 ● This audit covered only the most critical parts of the SimpleXMQ Haskell
 implementation. Perform an audit of the rest of the SimpleXMQ library as well as
 the mobile applications.

 Trail of Bits 18 SimpleX Chat Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 19 SimpleX Chat Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 20 SimpleX Chat Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Documentation The presence of comprehensive and readable codebase documentation

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Trail of Bits 21 SimpleX Chat Security Assessment
 PUBLIC

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 22 SimpleX Chat Security Assessment
 PUBLIC

 C. Non-Security-Related Findings

 The following recommendations are not associated with specific vulnerabilities. However,
 they enhance code readability and may prevent the introduction of vulnerabilities in the
 future.

 1. The sign’ function has a type that indicates it can fail, but in practice it never fails.
 Its return type can be changed to IO (Signature a) .

 2. The mkProtocolClient function partially fills the ProtocolClient record by using
 undefined for some fields. The same pattern is used in the mkHTTPS2Client
 function . Evaluating the undefined function results in a program crash. Consider
 changing the records structure so that no partial filling is required.

 3. A couple of modules have TODO comments, indicating the code is unfinished. The
 code should be finished and the TODO comments removed.

 Trail of Bits 23 SimpleX Chat Security Assessment
 PUBLIC

https://github.com/simplex-chat/simplexmq/blob/413aad5139acee28033404aed2e5516fc71c337c/src/Simplex/Messaging/Crypto.hs#L885-L888
https://github.com/simplex-chat/simplexmq/blob/413aad5139acee28033404aed2e5516fc71c337c/src/Simplex/Messaging/Client.hs#L238-L240
https://github.com/simplex-chat/simplexmq/blob/180b4b9dcb391eb0a4467fd5a66c7167f63869dc/src/Simplex/Messaging/Transport/HTTP2/Client.hs#L74
https://github.com/simplex-chat/simplexmq/blob/180b4b9dcb391eb0a4467fd5a66c7167f63869dc/src/Simplex/Messaging/Transport/HTTP2/Client.hs#L74

